edexcel

Mark Scheme (Results)
January 2014

Pearson Edexcel International Advanced Level

Core Mathematics 1 (6663A/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037647
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \quad \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use the correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners ${ }^{\text {ce }}$ reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners" reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1.	(a) $(2 \sqrt{x})^{2}=4 x$ $\begin{aligned} & \text { (b) } \frac{(5+\sqrt{7})}{(2+\sqrt{7})} \times \frac{(2-\sqrt{7})}{(2-\sqrt{7})} \\ & =\frac{10-7+2 \sqrt{7}-5 \sqrt{7}}{-3} \\ & =-1+\sqrt{7} \end{aligned}$	B1 (1) M1, A1 A1 (3) (4 marks)
Notes		
(a) \quad B1 $4 x$. Accept alternatives such as $x 4,4 \times x, x \times 4$		
(b)	M1 For multiplying numerator and denominator by $2-\sqrt{7}$ and attempting to expand the brackets. There is no requirement to get the expanded numerator or denominator correctseeing the brackets removed is sufficient.	
	A1 All four terms correct (unsimplified) on the numerator $\mathbf{O R}$ the correct denominator of -3	
	A1 Correct answer $-1+\sqrt{7}$. Accept $\sqrt{7}-1, \quad-1+1 \sqrt{7}$ and other fully correct simplified forms	

Question Number	Scheme Marks
2.	(a) $2 x^{2}-\frac{4}{\sqrt{x}}+1=2 x^{2}-4 x^{-\frac{1}{2}}+1$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 2 x-4 \times-\frac{1}{2} x^{-\frac{3}{2}}(+0) \quad\left(x^{n} \rightarrow x^{n-1}\right)$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+2 x^{-\frac{3}{2}}$ or $4 x+\frac{2}{x^{\frac{3}{2}}}$ oe (b) $x^{n} \rightarrow x^{n-1}$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4-3 x^{-\frac{5}{2}}$ or $4-\frac{3}{x^{\frac{5}{2}}}$
Notes	
(a)	M1 $\quad x^{n} \rightarrow x^{n-1}$ for any term. The sight of $2 x^{2} \rightarrow A x$ OR $C x^{-\frac{1}{2} x} \rightarrow D x^{-\frac{3}{2} x}$ OR $1 \rightarrow 0$ is sufficient Do not follow through on an incorrect index of $\frac{4}{\sqrt{x}}$ for this mark. A1 One of the first two terms correct and simplified. Either $4 x$ or $2 x^{-\frac{3}{2}}$ Accept equivalents such as $4 \times x$ and $2 \times x^{-\frac{3}{2}}=\frac{2}{x^{1.5}}$ Ignore +c for this mark. Do not accept unsimplified terms like $2 \times 2 x$ A1 A completely correct solution with no +c . That is $4 x+2 x^{-\frac{3}{2}}$ Accept simplified equivalent expressions such as $4 \times x+2 \times x^{-\frac{3}{2}}$ or $4 x+\frac{2}{x^{\frac{3}{2}}}$ There is no requirement to give the lhs ie $\frac{\mathrm{d} y}{\mathrm{~d} x}=$. However if the lhs is incorrect withhold the last A1 M1 For either $4 x \rightarrow 4$ or $x^{n} \rightarrow x^{n-1}$ for a fractional term. Follow through on incorrect answers in (a). A1 A completely correct solution $4-3 x^{-\frac{5}{2}}$ Award for expressions such as $4-3 \times x^{-\frac{5}{2}}$ or $4-\frac{3}{x^{\frac{5}{2}}}$ or $-3 \times x^{-2.5}+4$ There is no requirement to give the lhs ie $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\ldots$. However if the lhs is incorrect withhold the last A1

Question Number	Scheme Marks
3.	
Notes	
	M1 Rearrange $x-2 y-1=0$ into $x=$.., or $y=.$. , or $2 y=$.. and attempt to fully substitute into $2^{\text {nd }}$ equation. It does not need to be correct but a clear attempt must be made. Condone missing brackets $(2 y+1)^{2}+4 y^{2}-10 \times 2 y+1+9=0$ M1 Collect like terms to produce a quadratic equation in x (or y) $=0$ A1 Correct quadratic equation in $x($ or $y)=0$. Either $A\left(y^{2}-2 y\right)=0$ or $B\left(x^{2}-6 x+5\right)=0$ M1 Attempt to solve, with usual rules. Check the first and last terms only for factorisation. See appendix for completing the square and use of formula. Condone a solution from cancelling in a case like $A\left(y^{2}-2 y\right)=0$. They must proceed to find at least one solution $x=$.. or $y=$.. M1 Substitute at least one value of their x to find y or vice versa. This may be implied by their solution- you will need to check! A1 Both $x^{\prime \prime}$ s or both $y^{\prime \prime}$ s correct or a correct matching pair. Accept as a coordinate. Do not accept correct answers that are obtained from incorrect equations. A1 Both ,,pairs"c correct. Accept as coordinates $(1,0)(5,2)$ Special Cases where candidates write down answers with little or no working as can be awarded above. One correct solution - B2. Two correct solutions - B2, B2 To score all 7 marks candidates must prove that there are only two solutions. This could be justified by a sketch.

Question Number	Scheme Marks
	Notes for Question 6 continued
(c)	M1 An attempt to use their equation found in part b to find the x coordinate of C They must either use the equation of l_{2} and set $y=0 \Rightarrow x=\ldots$ or use its gradient $\frac{17.5}{x}=\frac{3}{2} \Rightarrow x=$.. A1 $\quad C=(8.5,0)$. Allow equivalents such as $x=8.5$ at C M1 An attempt to use $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for $A B$ or $B C$. There is no need to ,"calculate" these. Evidence of an attempt would be $A B^{2}=1^{2}+1.5^{2} \Rightarrow A B=.$. dM1 Multiplying together their values of $A B$ and $B C$ to find area $A B C D$ It is dependent upon both $\mathrm{M}^{* *} \mathrm{~s}$ having been scored. A1 cao16.25 or equivalents such as $\frac{65}{4}$.

Question Number	Scheme Marks
	Notes for Question 7 continued
(c)	M1 Use $l=a+(n-1) d$ to find A. It must be a full method with $d=1000, l=26000 a=A$ and $n=9,10$ or 11 leading to a value for A A1 $\quad A=17000$. Accept $A=17000$ written down for 2 marks as long as no incorrect work seen in its calculation. M1 Use $S_{n}=\frac{n}{2}(a+l)$ to find S for Anna. Follow through on their A, but $l=26000$ and $n=9,10$ or 11 Alternatively uses $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with their numerical value of $A, d=1000$ and $n=9,10$ or 11 Accept a series of terms with their value of A, rising in $£ 1000^{\circ} \mathrm{s}$ up to a maximum of £26000. A1 Anna earns $S_{10}=\frac{10}{2}(17000+26000)$ OR $S_{10}=\frac{10}{2}(2 \times 17000+9 \times 1000)$ in 10 years This is an intermediate answer. There is no requirement to state the value $£ 215000$ B1ft Shelim earns (b) +26000 in 10 years. This may be scored at the start of part c . A1 CAO and CSO Difference $=£ 9000$

Question Number	Scheme Marks
8.	(a) $\begin{aligned} & b^{2}-4 a c=(2 k)^{2}-4 \times 2 \times(k+2) \\ & b^{2}-4 a c>0 \Rightarrow 4 k^{2}-4 \times 2 \times(k+2)>0 \Rightarrow k^{2}-2 k-4>0 \end{aligned}$ (b) $\begin{gathered} k^{2}-2 k-4=0 \Rightarrow(k-1)^{2}=5 \\ k=1 \pm \sqrt{ } 5 \text { oe } \\ k>1+\sqrt{ } 5, \quad k<1-\sqrt{ } 5 \end{gathered}$
	$\text { Alt (a) } \begin{gathered} b^{2}>4 a c \Rightarrow(2 k)^{2}>4 \times 2 \times(k+2) \\ \Rightarrow k^{2}-2 k-4>0 \end{gathered}$
Notes	
(a)	M1 For attempting to use $b^{2}-4 a c$ with the values of a, b and c from the given equation. Condone invisible brackets. $2 k^{2}-4 \times 2 \times k+2$ could be evidence A1 Fully correct (unsimplified) expression for $b^{2}-4 a c=(2 k)^{2}-4 \times 2 \times(k+2)$ The bracketing must be correct. You can accept with or without any inequality signs. Accept $a=2, b=2 k, c=k+2 \Rightarrow b^{2}-4 a c=(2 k)^{2}-4 \times 2 \times(k+2)$ A1* Full proof, no errors, this is a given answer. It must be stated or implied that $b^{2}-4 a c>0$ Do not accept recovery from poor or incorrect bracketing or incorrect inequalities. Do not accept the answer written down without seeing an intermediate line such as $4 k^{2}-4 \times 2 \times(k+2)>0 \Rightarrow k^{2}-2 k-4>0$ Or $4 k^{2}-8 k-8>0 \Rightarrow k^{2}-2 k-4>0$ The inequality must have been seen at least once before the final line for this mark to have been awarded. Eg accept $D=4 k^{2}-8 k-8 \Rightarrow 4 k^{2}-8 k-8>0 \Rightarrow k^{2}-2 k-2>0$ M1 Attempt to solve the given 3 term quadratic (=0) by formula or completing the square. Do NOT accept an attempt to factorise in this question. If the formula is given it must be correct. It can be implied by seeing either $\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 1 \times-4}}{2 \times 1}$ or $\frac{--2 \pm \sqrt{-2^{2}-4 \times 1 \times-4}}{2 \times 1}$ If completing the square is used it can be implied by $(k-1)^{2} \pm 1-4=0 \Rightarrow k=\ldots$ Obtains critical values of $1 \pm \sqrt{ } 5$. Accept $\frac{2 \pm \sqrt{20}}{2}$ dM1 Outsides of their values chosen. It is dependent upon the previous M mark having been awarded. States $k>$ their largest value, $k<$ their smallest value Do not award simply for a diagram or a table- they must have chosen their 'outside regions' A1 Correct answer only. Accept $k>1+\sqrt{ } 5$ or $k<1-\sqrt{ } 5, k>1+\sqrt{ } 5 k<1-\sqrt{ } 5$, $(-\infty, 1-\sqrt{ } 5) \cup(1+\sqrt{ } 5, \infty)$ but not $k>1+\sqrt{ } 5$ and $k<1-\sqrt{ } 5,1+\sqrt{ } 5<k<1-\sqrt{ } 5$

Question Number	Scheme	Marks
	Notes for Question 8 continued	
	Also accept exact alternatives as a simplified form is not explicitly asked for in the question	
	Accept versions such as $k>\frac{2+\sqrt{20}}{2}$ or $k<\frac{2-\sqrt{20}}{2}$	

Question Number	Scheme Marks
9.	(a) $\mathrm{f}^{\prime}(x)=(x-2)(3 x+4)$ $\begin{gathered} =3 x^{2}-2 x-8 \\ y=\int 3 x^{2}-2 x-8 \mathrm{~d} x=3 \times \frac{x^{3}}{3}-2 \times \frac{x^{2}}{2}-8 x+c \\ x=3, y=6 \Rightarrow 6=27-9-24+c \\ c=. \\ \mathrm{f}(x)=x^{3}-x^{2}-8 x+12 \mathrm{cso} \end{gathered}$ (b) $\mathrm{f}(x)=(x-2)^{2}(x+p) p=3$ $\begin{aligned} & \mathrm{f}(x)=\left(x^{2}-4 x+4\right)(x+3) \\ & \mathrm{f}(x)=x^{3}-4 x^{2}+3 x^{2}+4 x-12 x+12 \\ & \mathrm{f}(x)=x^{3}-x^{2}-8 x+12 \mathrm{cso} \end{aligned}$ (c) Shape Min at (2,0) Crosses y-axis at $(0,12)$
Notes	
(a) (b)	B1 Writes $(x-2)(3 x+4)$ as $3 x^{2}-2 x-8$ M1 $\quad x^{n} \rightarrow x^{n+1}$ in any one term. For this M to be scored there must have been an attempt to expand the brackets and obtain a quadratic expression A1 Correct (unsimplified) expression for $\mathrm{f}(x)$, no need for +c . Accept $3 \frac{x^{3}}{3}-2 \frac{x^{2}}{2}-8 x$ M1 Substitutes $x=3$ and $y=6$ into their $\mathrm{f}(x)$ containing a constant , $c^{\prime \prime}$ and proceed to find its value. A1 $\quad \operatorname{Cso} \mathrm{f}(x)=x^{3}-x^{2}-8 x+12$. Allow $y=.$. Do not accept an answer produced from part (b) B1 States $p=3$ This may be obtained from subbing $(3,6)$ into $\mathrm{f}(x)=(x-2)^{2}(x+p)$ M1 Multiplies out a pair of brackets first, usually $(x-2)^{2}$ and then attempts to multiply by the third.The minimum criteria should be the first multiplication is a 3 T quadratic with correct first and last terms and the second is a 4 T cubic with correct first and last terms. Accept an expression involving p for M1 $(x-2)^{2}(x+p)=\left(x^{2}+\ldots x+4\right)(x+p)=x^{3}+\ldots x^{2}+\ldots x+4 p$

Notes for Question 9 continued

Candidates who have experienced Core 2 could take their answer to (a) and factorise.
The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient

$$
x - 2 \longdiv { x ^ { 3 } + \ldots \ldots \ldots . . }
$$

Alternatively the candidate could divide by $\left(x^{2}-4 x+4\right)$ to obtain $(x+.$.

$$
x ^ { 2 } - 4 x + 4 \longdiv { x ^ { 3 } + \ldots \ldots }
$$

The A 1 is scored for $\mathrm{f}(x)=(x-2)^{2}(x+3)$
The B1 is awarded for a statement of $p=3$ and not just $(x-2)^{2}(x+3)$
(c)

B1 Shape $+x^{3}$ graph with one maximum and one minimum. Its position is not important for this mark.
It must appear to tend to +infinity at the chs and - infinity at the lis.
The curve must extend beyond its „maximum" point and minimum points.

Eg. These are NOT acceptable.
B1 There is a turning point at $(2,0)$. Accept 2 marked as a maximum or minimum on the x-axis.
B1 ft Graph crosses the x - axis at $(-3,0)$.
Accept -3 marked at the point where the curve crosses the x-axis.
You may follow through on their values of ' $-p$ ' as long as $p<2$
B1 Graph crosses the y-axis at $(0,12)$. Accept 12 marked on the y-axis.

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline 10. \& \begin{tabular}{l}
(a) \(x^{n} \rightarrow x^{n-1} \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-2 \times 2 x-1\) \\
\(\operatorname{Sub} x=2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \times 2^{2}-2 \times 4-1=(3)\)
\[
3=\frac{y-1}{x-2}
\]
\[
y=3 x-5 \operatorname{cso}
\] \\
(b) At \(Q \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-4 x-1=3\)
\[
\begin{aligned}
\& 3 x^{2}-4 x-4=0 \\
\& (3 x+2)(x-2)=0
\end{aligned}
\]
\[
x=-\frac{2}{3}
\] \\
Sub \(x=-\frac{2}{3}\) into \(y=x^{3}-2 x^{2}-x+3\)
\[
y=\frac{67}{27}
\]
> M1A1
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Notes} \\
\hline (a)

(b) \& | M1 $\quad x^{n} \rightarrow x^{n-1}$ for any term including $3 \rightarrow 0$. |
| :--- |
| A1 $\quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=3 x^{2}-2 \times 2 x-1$ There is no need to see any simplification |
| M1 $\operatorname{Sub} x=2$ into their $\mathrm{f}^{\prime}(x)$ |
| dM1 Uses their numerical gradient with $(2,1)$ to find an equation of a tangent to $y=f(x)$. It is dependent upon both M's. Accept their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=2}=\frac{y-1}{x-2}$. Both signs must be correct |
| If $y=m x+c$ is used then it must be a full attempt to find a numerical ,,c" |
| A1* Cso $y=3 x-5$. This is a given answer and all steps must be correct. |
| Look for gradient $=3$ having been achieved by differentiation. |
| M1 Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ and proceeds to a $3 \mathrm{TQ}=0$. Condone errors on $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$ |
| dM1 Factorises their 3TQ (usual rules) leading to a solution $x=\ldots$. It is dependent upon the previous M. |
| Award also for use of formula/ completion of square as long as the previous M has been awarded. |
| A1 $x=-\frac{2}{3}$ |
| d M1 Sub their $x=-\frac{2}{3}$ into $y=x^{3}-2 x^{2}-x+3$. It is dependent only upon the first M in (b) having been scored |
| A1 Correct y coordinate $y=\frac{67}{27}$ or equivalent |

\hline
\end{tabular}

