

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Core Mathematics 1 (6663A/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037647
All the material in this publication is copyright
© Pearson Education Ltd 2014

PMT

General Marking Guidance

 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use the <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners" reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners" reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1.	$(a) \left(2\sqrt{x}\right)^2 = 4x$	B1 (1)
	(a) $(2\sqrt{x})^2 = 4x$ (b) $\frac{(5+\sqrt{7})}{(2+\sqrt{7})} \times \frac{(2-\sqrt{7})}{(2-\sqrt{7})}$	
	$= \frac{10 - 7 + 2\sqrt{7} - 5\sqrt{7}}{-3}$	M1, A1
	$=-1+\sqrt{7}$	A1
		(3)
		(4 marks)
	Notes	
(a)	B1 4x. Accept alternatives such as $x4$, $4 \times x$, $x \times 4$	
	M1 For multiplying numerator and denominator by $2-\sqrt{7}$ and attemptin brackets. There is no requirement to get the expanded numerator or denominator seeing the brackets removed is sufficient.	
(b)	All four terms correct (unsimplified) on the numerator OR the correct of -3	t denominator
	A1 Correct answer $-1+\sqrt{7}$. Accept $\sqrt{7}-1$, $-1+1\sqrt{7}$ and other fully correct simplified forms	

Question Number	Scheme	Marks
2.	(a) $2x^2 - \frac{4}{\sqrt{x}} + 1 = 2x^2 - 4x^{-\frac{1}{2}} + 1$	
	$\frac{dy}{dx} = 2 \times 2x - 4 \times -\frac{1}{2} x^{-\frac{3}{2}} (+0) (x^n \to x^{n-1})$	M1
	$\frac{dy}{dx} = 4x + 2x^{-\frac{3}{2}}$ or $4x + \frac{2}{x^{\frac{3}{2}}}$ oe	A1,A1
		(3)
	$(b) x^n \to x^{n-1}$	M1
	(b) $x^n \to x^{n-1}$ $\frac{d^2 y}{dx^2} = 4 - 3x^{-\frac{5}{2}}$ or $4 - \frac{3}{x^{\frac{5}{2}}}$	A1
		(2) (5 marks)
, ,	Notes	
(a)	M1 $x^n \to x^{n-1}$ for any term. The sight of $2x^2 \to Ax$ OR $Cx^{-\frac{1}{2}x} \to Dx^{-\frac{3}{2}x}$ Osufficient	OR $1 \rightarrow 0$ is
	Do not follow through on an incorrect index of $\frac{4}{\sqrt{x}}$ for this mark.	
	A1 One of the first two terms correct and simplified. Either $4x$ or $2x^{-\frac{3}{2}}$	
	Accept equivalents such as $4 \times x$ and $2 \times x^{-\frac{3}{2}} = \frac{2}{x^{1.5}}$	
	Ignore +c for this mark. Do not accept unsimplified terms like $2 \times 2x$	
	A1 A completely correct solution with no +c. That is $4x + 2x^{-\frac{3}{2}}$	
	A1 A completely correct solution with no +c. That is $4x + 2x^{-2}$ Accept simplified equivalent expressions such as $4 \times x + 2 \times x^{-\frac{3}{2}}$ or	$4x + \frac{2}{x^{\frac{3}{2}}}$
	There is no requirement to give the lhs ie $\frac{dy}{dx} = .$	
	However if the lhs is incorrect withhold the last A1	
(b)	M1 For either $4x \rightarrow 4$ or $x^n \rightarrow x^{n-1}$ for a fractional term. Follow through answers in (a).	on incorrect
	A1 A completely correct solution $4-3x^{-\frac{5}{2}}$	
	Award for expressions such as $4-3\times x^{-\frac{5}{2}}$ or $4-\frac{3}{x^{\frac{5}{2}}}$ or $-3\times x^{-2.5}$	+4
	There is no requirement to give the lhs ie $\frac{d^2y}{dx^2} = \dots$	
	However if the lhs is incorrect withhold the last A1	

Question Number	Sch	eme	Marks	
3.	x = 2y + 1	2y = x - 1		
	$(2y+1)^2 + 4y^2 - 10(2y+1) + 9 = 0$	$x^2 + (x-1)^2 - 10x + 9 = 0$	M1	
	$8y^2 - 16y = 0$	$2x^2 - 12x + 10 = 0$	M1,A1	
	8y(y-2) = 0 Alt $y(8y-16) = 0$	2(x-1)(x-5) = 0 Alt $(2x-2)(x-5) = 0$	M1	
	y=0, y=2	x = 1, x = 5		
	$y = 0$ in $x = 2y + 1 \Rightarrow x = 1$	$x = 1 \text{ in } y = \frac{x-1}{2} = 0$	M1	
	$y = 2 \text{ in } x = 2y + 1 \Rightarrow x = 5$	$x = 5 \text{ in } y = \frac{x-1}{2} = 2$		
	x=1,y=0 and x=5,y=2	x=1,y=0 and x=5,y=2	A1,A1	
			(7 marks)	
		Notes	l	
	 M1 Rearrange x-2y-1=0 into x=, or y=, or 2y= and attempt to fully substitute into 2nd equation. It does not need to be correct but a clear attempt must be made. Condone missing brackets (2y+1)²+4y²-10×2y+1+9=0 M1 Collect like terms to produce a quadratic equation in x (or y) =0 A1 Correct quadratic equation in x (or y)=0. Either A(y²-2y) = 0 or B(x²-6x+5) = 0 			
M1 Attempt to solve, with usual rules. Check the first and last terms only for factor See appendix for completing the square and use of formula. Condone a solution cancelling in a case like $A(y^2 - 2y) = 0$. They must proceed to find at least on solution $x =$ or $y =$			solution from	
	 M1 Substitute at least one value of their x to find y or vice versa. This may be implied by their solution- you will need to check! A1 Both x"s or both y"s correct or a correct matching pair. Accept as a coordinate. Do not accept correct answers that are obtained from incorrect equations. A1 Both "pairs" correct. Accept as coordinates (1,0) (5,2) Special Cases where candidates write down answers with little or no working as can be awarded above. One correct solution B2 			

Two correct solutions – B2, B2 To score all 7 marks candidates must prove that there are **only** two solutions. This could be justified by a sketch.

One correct solution – B2.

Question Number	Scheme	Marks
4.	Horizontal translation of ±4 Minimum point on they- axis at (0,2)	M1 A1 (2)
	(b) Correct "shape" with P ' adapted y intercept (0,6) and P "(4,4)	M1 A1 (2) (4 marks)
	Notes	
(a)	M1 A horizontal translation of ± 4 . The y coordinate of P remains unchanged at 2. Look for $P' = (0,2)$ or $(8,2)$. Condone U shaped curves A1 The shape remains unchanged and has a minimum at $(0,2)$. Condone U shaped curves	
(b)	M1 The curve remains in quadrant 1 and quadrant 2 with the minimum in quadrant 1. The shape must be correct. Condone U shaped curves. P' must have been adapted. The mark cannot be scored for drawing the original curve with P' =(4,2).	
	A1 Correct shape, condoning U shapes with the y intercept at (0, 6) and P'=(4,4) The coordinates of the points may appear in the text or besides the diagram. This is acceptable but if they contradict the diagram, the diagram takes precedence.	

Question Number		Scheme	Marks
5.	(a)	$\sum_{r=1}^{5} a_r = 12 + 4 \times 5^2 = \dots$	M1
		= 112	A1
			(2)
	(b)	$\sum_{r=1}^{6} a_r = 12 + 4 \times 6^2$	M1
	$a_6 = \sum_{r=1}^{r}$	$\sum_{r=1}^{6} a_r = 12 + 4 \times 6^2$ $\sum_{r=1}^{6} a_r - (\text{part } a)$	dM1
	$a_6 = 1$	56 - 112 = 44	A1
			(3) (5 marks)
		Notes	
(a)	M1	Substitutes $n=5$ into the expression $12 + 4n^2$ and attempt to find a number of $\sum_{r=1}^{5} a_r$.	merical answer
		Accept as evidence expressions such as $12+4\times5^2=$, $12+4(5)^2=$, $12+20^2=412$ Accept for this mark solutions which add $12+4\times1^2, 12+4\times2^2, 12+4\times3^2, 12+4\times4^2, 12+4\times5^2$ and as a result	
	A1	sum. cao 112. Accept this answer with no incorrect working for both mark consequently summed it will be scored A0	xs. If it is
(b)	M1	Substitutes $n = 6$ into the expression $12 + 4n^2$ Accept as evidence $12 + 4 \times 6^2 =$, $12 + 4(6^2) = 12 + 24^2 =$ or inde You can accept the appearance of $12 + 4 \times 6^2 =$ in a sum of terms.	ed 156.
	dM1	Attempts to find their answer to $\sum_{i=1}^{6} a_{i}$ – their answer to part a	
		This is dependent upon the previous M mark.	
		Also accept a restart where they attempt $\sum_{r=1}^{6} a_r - \sum_{r=1}^{5} a_r$	
	A1	cao 44	
	Alterr M1	native to 5(b) Writes down an expression for	
		$a_n = (12+4n^2)-(12+4(n-1)^2)=4(n^2-(n-1)^2)=4(2n-1)$	
	dM1 A1	Subs $n = 6$ into the expression for $a_n = 4(2n-1) =$ cao 44	

Question Number	Scheme	Marks
6.	(a) (i) $\frac{3}{2}$ or equivalents such as 1.5	B1
	(ii) $(0, 3.5)$ Accept $y=3\frac{1}{2}$	B1
	2	(2)
	(b) Perpendicular gradient $l_2 = -\frac{2}{3}$	B1ft
	Equation of line is: $y-5 = -\frac{2}{3}(x-1)$	M1A1
	3y + 2x - 17 = 0	A1 (4)
	(c) Point C: $y = 0 \Rightarrow 2x = 17 \Rightarrow x = 8.5$ oe	M1, A1
	$AB = \sqrt{(1-0)^2 + (5-3.5)^2} = \left(\frac{\sqrt{13}}{2}\right)$	M1 (either)
	$BC = \sqrt{(8.5 - 1)^2 + (5 - 0)^2} = \left(\frac{\sqrt{325}}{2}\right)$	
	Area rectangle = $AB \times BC = \frac{\sqrt{13}}{2} \times \frac{\sqrt{325}}{2} = \frac{\sqrt{13}}{2} \times \frac{\sqrt{13}\sqrt{25}}{2} = \frac{5 \times 13}{4} = 16.25 \text{ oe}$	dM1A1
		(5) (11 marks)
	Notes	
(a)	B1 cao gradient = 1.5. Accept equivalences such as $\frac{3}{2}$	
	B1 cao intercept =(0,3.5). Accept 3.5, $y=3.5$ and equivalences such as $\frac{7}{2}$	
(b)	B1ft For using the perpendicular gradient rule, $m_1 = -\frac{1}{m_2}$ on their ,,1.5".	
	Accept $-\frac{1}{15!}$ or this as part of their equation for l_2 Eg. $-\frac{1}{15!} = \frac{y-1}{y-1}$	<u></u>
	M1 For an attempt at finding the equation of l_2 using (1,5) and their adap	ted gradient.
	Condone for this mark a gradient of $\frac{3}{2}$ going to $\frac{2}{3}$. Eg. Allow for $\frac{y}{x}$	$\frac{-5}{-1} = \frac{2}{3}$
	If the form $y = mx + c$ is used it must be a full method to find c with adapted gradient. A1 For an a correct unsimplified equation of the line through (1,5) with t gradient.	(1,5) and an
	Allow $\frac{y-5}{x-1} = -\frac{2}{3}$ and $5 = -\frac{2}{3} \times 1 + c \Rightarrow c = \frac{17}{3}$ Al $\cos \pm (3y + 2x - 17) = 0$	
	An example of B1ftM0A0A0 would be $-\frac{1}{3} = \frac{y-5}{x+1}$ following a gradient of	f ,,3"in part (a)
	An example of B1ftM1A0A0 would be $-\frac{1}{3} = \frac{y-5}{x-1}$ following a gradient of	
	An example of B0ftM1A0A0 would be $\frac{1}{3} = \frac{y-5}{x-1}$ following a gradient of	f ,,3"in part (a)

Question Number		Scheme	Marks		
	Notes for Question 6 continued				
(c) M1 An attempt to use their equation found in part b to find the x coordinate of They must either use the equation of l_2 and set $y = 0 \Rightarrow x =$ or use its graduation of l_2 and set $y = 0 \Rightarrow x =$					
	A1 M1	$x = 2^{-3}$ $C = (8.5, 0)$. Allow equivalents such as $x = 8.5$ at C . An attempt to use $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for AB or BC . There is no n	need to		
	dM1	"calculate" these. Evidence of an attempt would be $AB^2 = 1^2 + 1.5^2 \Rightarrow AB =$ Multiplying together their values of AB and BC to find area $ABCD$ It is dependent upon both M"s having been scored.			
	A1	cao16.25 or equivalents such as $\frac{65}{4}$.			

Question Number	Scheme	Marks
7.	(a) 14000+8×1500=14000+12000 =£26000	M1 A1*
	(b) $S_n = \frac{n}{2}(a+l) = \frac{9}{2} \times (14000 + 26000)$	M1
	OR $S_9 = \frac{n}{2}(2a + (n-1)d) = \frac{9}{2} \times (28000 + 8 \times 1500)$	1111
	=£180000	A1 (2)
	(c) Use $a + (n-1)d$ to find A	
	$A + (10-1) \times 1000 = 26000$ $A = 17000$	M1 A1
	Use $S_n = \frac{n}{2}(a+l)$ or $S_n = \frac{n}{2}(2a+(n-1)d)$ to find S for Anna	
	$S_{10} = \frac{10}{2} (17000 + 26000) (= £215000) \text{ or } S_{10} = \frac{10}{2} (2 \times 17000 + 9 \times 1000) (= £215000)$	M1A1
	Shelim earns 180000+26000 in 10 years =(£206000)	B1ft
	Difference= £9000	A1
		(6) (10 marks)
	Notes	~ 1
(a)	 M1 Uses S = a + (n-1)d with a=14000, d=1500 and n=8, 9 or 10 in an at salary in year 9 Accept a sequence written out only if all terms up to year 9 are includerrors. A1* csa 26000. It is acceptable to write a sequence for both the 2 marks FYI the terms are 14000,15500,17000,18500,20000,21500,23000,24 	ded-Allow no
	Alt (a) Alternative working backwards M1 Uses $S = a + (n-1)d$ with $a=14000$, $d=1500$ and $S=26000$ in attemp must reach $n=$ A1 $n=9$	t to find <i>n</i> . It
(b)	M1 Uses $S_n = \frac{n}{2}(a+l)$ with $a=14000$, $l=26000$ and $n=8$, 9 or 10. Do not incorrect l 's . Alternatively uses $S_n = \frac{n}{2}(2a+(n-1)d)$ with $a=14000$, $d=1500$ and	
	Weaker candidates may list the individual salaries. This is acceptable terms are included. For example 14000+15500+17000+18500+20000+21500+23000+24500+26000 A1 Cao (£) 180000.	as long as all

Question Number		Scheme	Marks	
		Notes for Question 7 continued		
(c)	M1 Use $l = a + (n-1)d$ to find A.			
	A 1	It must be a full method with $d=1000$, $l=26000a=A$ and $n=9$, 10 or 11 value for A	leading to a	
	A1	A=17000.		
	Accept $A=17000$ written down for 2 marks as long as no incorrect work seen it calculation. M1 Use $S_n = \frac{n}{2}(a+l)$ to find S for Anna. Follow through on their A , but $l=26000$ and $n=9$, 10 or 11			
		Alternatively uses $S_n = \frac{n}{2}(2a + (n-1)d)$ with their numerical value of A, $d=1000$		
		<i>n</i> =9, 10 or 11		
		Accept a series of terms with their value of A, rising in £1000"s up to a maximu £26000.		
	A 1	Anna earns $S_{10} = \frac{10}{2} (17000 + 26000)$ OR $S_{10} = \frac{10}{2} (2 \times 17000 + 9 \times 1000)$ in $S_{10} = \frac{10}{2} (2 \times 17000 + 9 \times 1000)$	10 years	
		This is an intermediate answer. There is no requirement to state the va	alue £215 000	
	B1ft A1	Shelim earns (b)+26000 in 10 years. This may be scored at the start of CAO and CSO Difference =£9000	f part c.	

PMT

Question Number	Scheme	Marks
8.	(a) $b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k+2)$	M1A1
	$b^2 - 4ac > 0 \Rightarrow 4k^2 - 4 \times 2 \times (k+2) > 0 \Rightarrow k^2 - 2k - 4 > 0$	A1*
		(3)
	(b) $k^2 - 2k - 4 = 0 \Rightarrow (k-1)^2 = 5$	M1
	$k = 1 \pm \sqrt{5}$ oe	A1
	$k > 1 + \sqrt{5}, k < 1 - \sqrt{5}$	dM1A1
		(4) (7 marks)
	Alt (a) $b^2 > 4ac \Rightarrow (2k)^2 > 4 \times 2 \times (k+2)$	M1A1
	$\Rightarrow k^2 - 2k - 4 > 0$	A1*
		(3)
	Notes	
(a)	M1 For attempting to use $b^2 - 4ac$ with the values of a, b and c from	the given equation.
	Condone invisible brackets. $2k^2 - 4 \times 2 \times k + 2$ could be evidence	
	A1 Fully correct (unsimplified) expression for $b^2 - 4ac = (2k)^2 - 4 \times$	$2\times(k+2)$
	The bracketing must be correct. You can accept with or without a	any inequality signs.
	Accept $a = 2, b = 2k, c = k + 2 \Rightarrow b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k + 2)$	
	A1* Full proof, no errors, this is a given answer. It must be stated or in	mplied that
	$b^{2}-4ac>0$ Do not accept recovery from poor or incorrect bracketing or inco	rreat inaqualities
	Do not accept the answer written down without seeing an intermed	
	$4k^2 - 4 \times 2 \times (k+2) > 0 \Rightarrow k^2 - 2k - 4 > 0$	
	Or $4k^2 - 8k - 8 > 0 \Rightarrow k^2 - 2k - 4 > 0$	
	The inequality must have been seen at least once before the final have been awarded.	line for this mark to
	Eg accept $D = 4k^2 - 8k - 8 \Rightarrow 4k^2 - 8k - 8 > 0 \Rightarrow k^2 - 2k - 2 > 0$	
(b)	M1 Attempt to solve the given 3 term quadratic (=0) by formula or c square.	ompleting the
	Do NOT accept an attempt to factorise in this question . If the formula is given it must be correct.	
	It can be implied by seeing either $\frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 1 \times -4}}{2 \times 1}$ or	
	$\frac{2\pm\sqrt{-2^2-4\times1\times-4}}{2\times1}$	
	If completing the square is used it can be implied by $(k-1)^2 \pm 1$	$-4=0 \Longrightarrow k=$
	A1 Obtains critical values of $1 \pm \sqrt{5}$. Accept $\frac{2 \pm \sqrt{20}}{2}$	
	dM1 Outsides of their values chosen. It is dependent upon the previous been awarded. States $k >$ their largest value, $k <$ their smallest values.	_
	Do not award simply for a diagram or a table- they must have ch regions'	
	A1 Correct answer only. Accept $k > 1 + \sqrt{5}$ or $k < 1 - \sqrt{5}$, $k > 1 + \sqrt{5}$	$k < 1 - \sqrt{5}$,
	$\left(-\infty,1-\sqrt{5}\right)\cup\left(1+\sqrt{5},\infty\right)$	
	but not $k > 1 + \sqrt{5}$ and $k < 1 - \sqrt{5}$, $1 + \sqrt{5} < k < 1 - \sqrt{5}$	

Question Number	Scheme	Marks	
	Notes for Question 8 continued		
	Also accept exact alternatives as a simplified form is not explicitly asked for in the question		
	Accept versions such as $k > \frac{2 + \sqrt{20}}{2}$ or $k < \frac{2 - \sqrt{20}}{2}$		

Question Number	Scheme	Marks
9.	(a) $f'(x) = (x-2)(3x+4)$	
	$=3x^2-2x-8$	B1
	$y = \int 3x^2 - 2x - 8dx = 3 \times \frac{x^3}{3} - 2 \times \frac{x^2}{2} - 8x + c$	M1A1
	$x=3, y=6 \Rightarrow 6=27-9-24+c$	
	$c = \dots$	M1
	$f(x) = x^3 - x^2 - 8x + 12 \cos \theta$	A1 (5)
	(b) $f(x) = (x-2)^2(x+p) p = 3$	B1
	$f(x) = (x^2 - 4x + 4)(x + 3)$	
	$f(x) = x^3 - 4x^2 + 3x^2 + 4x - 12x + 12$	
	$f(x) = x^3 - x^2 - 8x + 12 \cos \theta$	M1A1 (3)
	(c)	(3)
	Shape Min at (2,0) Crosses x- axis at (-3,0) Crosses y- axis at (0,12)	B1 B1 B1ft B1
	348	(4) (12 marks)
	Notes	
(a)	B1 Writes $(x-2)(3x+4)$ as $3x^2-2x-8$	
	M1 $x^n \to x^{n+1}$ in any one term. For this M to be scored there must have been an attempt to expand obtain a quadratic expression	the brackets and
	A1 Correct (unsimplified) expression for $f(x)$, no need for +c. Accept 3	$3\frac{x^3}{2}-2\frac{x^2}{2}-8x$
	M1 Substitutes $x=3$ and $y=6$ into their $f(x)$ containing a constant , c and its value.	3 2
	A1 $\operatorname{Cso} f(x) = x^3 - x^2 - 8x + 12$. Allow $y =$	
	Do not accept an answer produced from part (b)	
(b)	 States p = 3 This may be obtained from subbing (3,6) into f(x) = (x-2)²(x+p) M1 Multiplies out a pair of brackets first, usually (x-2)² and then attem by the third. The minimum criteria should be the first multiplication is with correct first and last terms and the second is a 4T cubic with collast terms. 	s a 3T quadratic
	Accept an expression involving p for M1	
	$(x-2)^{2}(x+p) = (x^{2} +x + 4)(x+p) = x^{3} +x^{2} +x + 4$	_
	A1 $\operatorname{cso} f(x) = x^3 - x^2 - 8x + 12$, which must be the same as their answer in	for part (a)

	Notes for Question 9 continued		
	Candidates who have experienced Core 2 could take their answer to (a) and factorise.		
	The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient		
	$x-2)\overline{x^3+\ldots}$		
	Alternatively the candidate could divide by (x^2-4x+4) to obtain $(x+)$		
	$x^2 - 4x + 4$) $x^3 + \dots$		
	The A1 is scored for $f(x) = (x-2)^2(x+3)$		
	The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$		
(c)	Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its "maximum" point and minimum points. Eg. These are NOT acceptable.		
	B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis.		
	B1ft Graph crosses the x- axis at $(-3, 0)$. Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		
	B1 Graph crosses the y-axis at (0, 12). Accept 12 marked on the y-axis.		

Question Number	Scheme	Marks	
10.	(a) $x^n \to x^{n-1} \frac{dy}{dx} = 3x^2 - 2 \times 2x - 1$	M1A1	
	Sub $x=2$ $\frac{dy}{dx} = 3 \times 2^2 - 2 \times 4 - 1 = (3)$	M1	
	$3 = \frac{y-1}{x-2}$	dM1	
	$y = 3x - 5 \cos \theta$	A1* (5)	
	(b) At $Q \frac{dy}{dx} = 3x^2 - 4x - 1 = 3$		
	$3x^2 - 4x - 4 = 0$	-M1 -dM1	
	$x = -\frac{2}{3}$	A1	
	Sub $x = -\frac{2}{3}$ into $y = x^3 - 2x^2 - x + 3$	dM1	
	$y = \frac{67}{27}$	A1	
		(5) (10 marks)	
	Notes	<u> </u>	
(a)	M1 $x^n \to x^{n-1}$ for any term including 3 \to 0.		
(b)	A1 $\left(\frac{dy}{dx}\right) = 3x^2 - 2 \times 2x - 1$ There is no need to see any simplification		
	M1 Sub $x=2$ into their $f'(x)$		
	dM1 Uses their numerical gradient with (2, 1) to find an equation of a tan		
	It is dependent upon both M's. Accept their $\frac{dy}{dx}\Big _{x=2} = \frac{y-1}{x-2}$. Both sign	gns must be	
	correct	1 "	
	If $y = mx + c$ is used then it must be a full attempt to find a numerical A1* Cso $y = 3x - 5$. This is a given answer and all steps must be correct.		
	Look for gradient =3 having been achieved by differentiation.		
	M1 Sets their $\frac{dy}{dx} = 3$ and proceeds to a 3TQ=0. Condone errors on $\left(\frac{dy}{dx}\right)$		
	dx $\frac{dx}{dM1}$ Factorises their 3TQ (usual rules) leading to a solution $x=$ It is d		
	the previous M. Award also for use of formula/ completion of square as large as the many large and the many large as th	marriana M laga	
	Award also for use of formula/ completion of square as long as the paper been awarded.	revious ivi nas	
	$A1 x = -\frac{2}{3}$		
	d M1 Sub their $x = -\frac{2}{3}$ into $y = x^3 - 2x^2 - x + 3$. It is dependent only upon	on the first M in	
	(b) having been scored		
	A1 Correct y coordinate $y = \frac{67}{27}$ or equivalent		

PMT